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• This research highlights synergies from two orthogonal studies on domestic robots.
• Energy consumption can benefit from mapping technologies, and influence performance.
• Users’ perception and needs are not sufficiently taken into account in robot design.
• Robots are rejected due to incompatibilities with the user’s ecosystem.
• Several ways to improve the current state of the art are proposed.
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a b s t r a c t

This article considers the suitability of current robots designed to assist humans in accomplishing their
daily domestic tasks. With several million units sold worldwide, robotic vacuum cleaners are currently
the figurehead in this field. As such, we will use them to investigate the following key question: How
does a service cleaning robot perform in a real household? One must consider not just how well a robot
accomplishes its task, but also how well it integrates inside the user’s space and perception. We took
a holistic approach to addressing these topics by combining two studies in order to build a common
ground. In the first of these studies, we analyzed a sample of seven robots to identify the influence of key
technologies, such as the navigation system, on technical performance. In the second study, we conducted
an ethnographic study within nine households to identify users’ needs. This innovative approach enables
us to recommend a number of concrete improvements aimed at fulfilling users’ needs by leveraging
current technologies to reach new possibilities.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Since the early 1950s, futuristic scenarios of our daily lives at
home have included robots: robot maids, robot companions, robot
nannies, robot guards [1]. This visionhas not substantially changed,
and itwas only a fewyears ago that Bill Gates predicted in Scientific
American that there will soon be ‘‘a robot in every home’’ [2].
Where are we now, however? So far, the only success of domestic
robots can be noted in the field of floor-cleaning robots; millions
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of these devices are used to vacuum people’s homes nowadays.
We do not know much yet about the long-term acceptance of
domestic robots, but first exploratory studies carried out with
robotic vacuum cleaners in the United States [3–5] suggest that
these devices have several shortcomings that may restrict a broad
user acceptance beyond initial adoption. Also, there are strong
novelty effects with innovative technologies such as robots [6,7].

Today’s robotic technologies are mainly driven by the technical
challenges arising when a mobile robot has to perform a specific
task in a loosely defined environment. However, some other
topics have long been neglected in the design of robots for
specific purposes, including the energy-use implications of some
technical choices or harmonious integration of the robot into the
user’s ecosystem [8]. With technological progress, robotic vacuum
cleaners (alongwith other domestic appliances) are nowbecoming
widely available. The time has come to take these topics into
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(a) Energetic agent. (b) Social agent.

Fig. 1. Our dual view of the domestic robotic agent. The agent in (a) spends its energy on an number of functions, in order to fulfil its task, and these functions in turn
influence the energy consumption. The agent in (b) interacts with several elements that compose its environment.
accountwhen considering the design of future robots, as it appears
essential to integrate the user into the design loop to advance these
products further.

In robotics today (in spite of a cross-disciplinary approach),
the main body of the current research addresses either technical
issues (perception, locomotion, or learning algorithms, just to
name a few) or social phenomena independently of each other. The
effectiveness of the research being performed across disciplines is
muted by this process. The technical and user points of view are
seldom presented side by side. Our two-sided study fills this gap.

Our approach to these issues tries to be holistic and seeks
synergies between current technical research and design that
is acceptable for the user. For this, we integrate results from a
first technical study on several robotic vacuum cleaners [9] with
findings froma second study conducted in people’s homes. In doing
so, we aim to advance personal robotics from both technical and
user-oriented points of view. This collaborative approach brings
together research from various fields.

Robotics is, by its nature, multi-disciplinary. With our pro-
posed approach, we aim to extend the borders of the robotic
community by showing how synergies can create meaningful
cross-disciplinary dialog. Ultimately, the common goal is to de-
velop human-oriented domestic robots that enablemeaningful hu-
man–robot interaction (HRI) and have the potential to improve
people’s quality of life.

The remainder of the paper is organized as follows. In Section 2,
we will state the main questions guiding both the technical and
user studies. Section 3 will list related work to determine the state
of the art in both fields, while Section 4 summarizes our dual
methodology. The results build the core of Section 5, and they
will be presented using a unified outline, raising the knowledge
gained up to a higher level. The conclusion of Section 6will present
the analysis of current robotic vacuum cleaners in light of both
studies’ findings, and will summarize current shortcomings. In
this section, we also suggest research directions for leveraging
current technologies to enhance user acceptance with targeted
improvements.

2. Motivation

Robotic vacuum cleaners have attained a fair degree of success
in the domestic robot market. The iRobot Corporation (one of the
main players in this market) claims to have sold 6 million units of
its ‘‘Roomba‘‘robot between 2002 (its first release) and 2010 [10].
According to the statistics of the International Federation of
Robotics [11], about 2.5 million personal and service robots were
sold in 2011, an increase of 15% in numbers (19% in value)
compared to 2010. The forecast for the period 2012–2015 exceeds
10million units. This trend clearly emphasizes the growing impact
of domestic robots in our homes, which creates new interaction
paradigms. In parallel, the energy demand for the operation of
millions of new cleaning robots will follow the same tendency.

Moreover, with the evolution of technologies, domestic robots
shifted from the simple ‘‘random-walk’’ approach towards more
evolved navigation schemes, involving a localization technology at
an affordable price. Up to now, no scientific study has analyzed the
potential impact of these newer robots in terms of user acceptance
or energy consumption.

We have carried out two distinct but complementary studies
in the present work. The remainder of this section summarizes
the questions at the center of both studies, and the contributions
gained by linking them together.

2.1. Designing efficient domestic robots

The primary part of this study analyzes the current state of the
art and level of achievement in domestic robotics, with a focus on
robotic vacuum cleaner and energy-related topics. The robot must
have several capabilities in order to fulfil its task: (1) a navigation
strategy inside the environment, (2) a cleaning device, and
(3) some kind of interaction with the user, at least to start and
stop the cleaning process. An energy storage andmanagement unit
powers these functions. This view is illustrated in Fig. 1(a). As the
energy is located at the center of this robotic system, we will refer
to it as an energetic agent in the course of this work.

Some research results and design choices for the various func-
tions will impact the energy consumption of the mobile system,
and thus affect its autonomy.Within this study,we aim to highlight
the influence of these choices on energy consumption, in order to
design energy-wise agents that are compatible with a sustainable
growth of the number of robots. As we will see, localization and
navigation strategies are the main energy savers, and they also
bring some other benefits, but more could be achieved by adding
better planning and learning. Minimization of energy consump-
tion for robotic vacuum cleaners (and other robots) is an important
topic for consideration, especially with the growth ofmass-market
demands and society’s dependence on energy.

This paper presents an analysis of the performance of several
existing robots, assessing the impact of the embedded technologies
on the system’s fulfillments. We present the results from a
three-month study performed on a sample of seven robots,
bringing together the main trends on the market. The focus is on
technicalmetrics and therefore concernsmostly short-term issues,
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answering the following question: Does it work well in a domestic
environment? The key findings of this study aim at improving
future designs, by identifying key technologies that enable robots
to be more efficient in their environments while at the same time
increasing acceptance by the end user.

2.2. Robots in homes are more than a technical artifact

When deploying robots in people’s homes, it is important to
also consider broad human factors, as well as aspects dealing with
user needs, acceptance, and social implications. Once it begins
to be used by lay people in their private spaces, a robot no
longer remains simply a technical artifact; rather, it becomes a
social agent [4]. A cleaning robot can have strong impacts on its
direct environment (‘‘the home’’), the tasks that are related to it
(e.g., cleaning), and the people in contact with it (‘‘social actors’’)
[3]. Fig. 1(b) summarizes the relations between this social agent
and its surrounding environment. Ideally, these aspects should be
integrated in the development of the robot using techniques such
as ‘‘interaction design’’ or ‘‘design research’’ [12].

In spite of the fact that several million robotic vacuum cleaners
have already been sold, not much is known about how people use
and experience the presence of a service robot in their homes.
Questions arise regarding the extent to which the available robotic
vacuum cleaners meet user needs and expectations, and how
people actually use these devices. Our user study addresses these
questions. The motivation of the user study was to understand
users’ perceptions, needs, and personal use of a robotic vacuum
cleaner. We aim to identify the challenges brought on by the real
world and people’s uniqueways of using a robotic vacuum cleaner,
and to devise how design could improve these points.

With this user-centered approach, we aim to advance domestic
robotic vacuum cleaners with respect to several aspects: usability,
perceived usefulness, and design. These are important factors for
the adoption of technology in homes [13,14]. By understanding
people’s expectations and their ways of using a robotic vacuum
cleaner, we can better meet users’ true needs and take them into
account in the process of developing these types of device and
future technologies.

To address these aspects in a holistic fashion, we conducted
a six-month ethnographic study with nine households that were
given an iRobot Roomba robotic vacuum cleaner. This social study
was carried out in parallel to the technical study. In contrast to the
technical study, the user studywasmotivated by the desire to shed
light on the long-term implications that robotic devicesmight have
in people’s homes. In this paper, we focus on presenting results on
usage and user needs of the robotic cleaner, to leverage technical
insights and provide relevant design guidelines. The detailed
design and results of the ethnographic study, focusing on long-
term implications and impact of the robot on its ecosystem, are
presented in another publication [15]. In the present study, wewill
focus on acceptance factors of robots from the user perspective,
and how to match more closely users’ needs and expectations by
considering technical improvements.

3. Related work

In the current state of the art for domestic robotics, no other
study to date has attempted to provide such a closematch between
the scientific challenges and user acceptance of the technology. As
our approach is somewhat unique, we present the relatedwork for
each topic separately.

3.1. Technical study

Currently, in the domestic environment, only a few types
of mobile robot have been mass produced. The first successful
product, and now the most widespread, is the robotic vacuum
cleaner. The first research related to creation of a robotic vacuum
cleaner dates back to the 1980s [16], while the first prototype for
domestic use can be dated back to 1991 [17]. Up to now, studies
have compared mobile domestic robots only from an historical
or purely technical point of view [18,19]. They do not take into
account the most recent trends, such as the use of low-cost
mapping technologies.

Other commercial applications of robotics to date have included
lawn-mowing, telepresence, and pool and gutter cleaning [20].
In the literature, other examples such as assistive [21] or
rehabilitation robotics [22] can also be found. Most of the research
has focused on key aspects such as navigation in dynamic
environments [23], or,more broadly, the simultaneous localization
and mapping (SLAM) problem [24–26]. Some researchers have
studied performance metrics, such as the coverage of several
domestic mobile robots performing a random walk [27]. Again,
this does not reflect the capabilities of the latest technologies
currently available. The question of energy efficiency for these
kinds of appliance was only considered recently, and only to point
out the lack of regulations and standards compared to other home
appliances [28].

Our studyproposes to fill in the current gap in the state of the art
by studying a sample of the latest domestic robots, with a special
focus on the energy efficiency of the overall system.

3.2. User study

From a scientific viewpoint, surprisingly few evaluations of
domestic service robots in real households have been carried out.
For this study, we report on a pair of surveys, a set of interviews,
and field studies that were carried out in people’s homes. These
different information-gathering techniques allowed us to develop
a strong user-centered view of the currently available technology.

A pair of studies explored people’s general expectations
of robots and attitudes towards domestic robots [29,30]. One
important conclusion that could be drawn is that domestic robots
need to be evaluated separately from robots in general, as people
tend to hold different concepts of the two [5]. On one hand, people
overall have rather high expectations of robots, and their image of
‘‘the great mass of robotics’’ seems to be shaped by what science
fiction and novels present to them [29,31]. On the other hand,
when people imagine a particular domestic service robot, they
have no clear idea of what it could do in their household [29],
and, accordingly, expectations of a robotic vacuum cleaner such
as a Roomba are quite low [5]. Dautenhahn et al. [32] described
that people want to view home robots not as friends but as
machines, assistants, and servants that perform various tasks for
them. Furthermore, in terms of people’s perception of robots,
cultural background, gender, age, and other personal factors seem
to play a crucial role [29,30].

Concerning the use of robotic floor cleaners in homes, Sung et al.
described the demographic profile of Roomba owners, based on a
survey amongmore than 350 Roomba users [33]. Against common
expectations, they found that Roomba users are equally likely to be
men or women, and tend to be younger (<30 years), with higher
levels of education or technical backgrounds. Householdswith pets
and children expressed greater satisfaction with the robot, which
implies that theymight use the robot differently than do thosewho
live alone. This effect of household composition on how a robotic
vacuum cleaner is used has also been noted by Forlizzi [4]. Besides
increasing their cleaning frequency with the Roomba, the majority
of Roomba owners still perform extra cleaning with their manual
vacuum cleaners, and most households had to make modifications
to the physical layout of their homes in order to make the robot
work well [3–5,8,15]. These findings reveal that domestic robotic
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Fig. 2. Robots used for the technical study, sorted by their localization technology. Copyright for (a)–(f): RTS/ABE; for (g): Neato Robotics.
vacuum cleaners could be improved to better fit in people’s homes
and thereby be more accepted.

Some concrete design suggestions come from Kim et al. [8] and
Sung et al. [34–36]. Kim et al. deployed four different vacuuming
robots in Korean homes, and identified a path-planning behavior of
the robot that met the assessed user needs [8]. These researchers
discovered a discrepancy between the cleaning path people used
when manually vacuuming and the paths chosen by the robotic
vacuum cleaners. Specifically, the actual user cleans with methods
unique to specific areas of the house, rather than by following
a technically optimal cleaning path. Based on this, the authors
suggest that a robot’s path-planning method should use not only a
layeredmap but also a cleaning area designationmethod reflecting
each area’s characteristics. This goes along with people’s wish
to have an intelligent domestic robot that is able to learn and
adapt [5]. Furthermore, a domestic robot needs to provide a certain
amount of human control, be compatible with the user’s domestic
environment, and take gender into consideration [34,35]. Sung
gives concrete suggestions for interaction design with everyday
robots in an unpublished document [36]. On the operation
level, she suggests path planning, the robot being able to learn,
and reducing motor noise; on the communication level, she
proposes allowing both autonomous and manual control. On the
engagement level, Sung’s guidelines include customization and
ensuring secure service.

Our user-centered study differs from previous work in several
aspects. Whereas Kim et al. [8] focused on the path planning of
humans and robots when vacuuming, we were interested in more
generally exploring the usage and acceptance of vacuum cleaning
robots. Kim et al. let housewives use vacuum cleaning robots for
ten days, whereas we followed up households over six months to
be able to understand long-term effects, such as user acceptance
factors. In this, our study is similar to Sung et al.’s long-term study
with Roombas in 30 households in the US [3]. Although it has
methodological similarities [37], our work differs in the sense that
it was carried out several years later (and technology had advanced
meanwhile) and it was conducted in a different cultural region.
However, due to our small sample size of nine households, we are
not able to generalize our results and draw on cultural differences.

By comparing our findings to Sung et al.’s work, we are able
to generally support their four temporal stages of robot adoption,
as outlined in their ‘‘Domestic Robot Ecology’’ (see [15] for more
details). Moreover, we found several interesting differences in
how households in our study used and perceived the robot
in comparison to those households in Sung et al.’s study. This
provides further insights into HRI in homes. For instance, people
seemed to be less impacted by the robot acting as a social agent,
but rather described it as a practical tool and wanted to use it as
such. The robot also evoked less dynamics in people’s cleaning
routine than presented in Sung et al. Consequently, the main
contributions of the user study are the following twopoints: (1) the
identification of user needs, usage patterns, and perception of the
vacuum cleaning robot in a real-world environment, (2) and how
they are related to technical solutions implemented in vacuum
cleaning robots.

4. Methodology

We used an orthogonal methodology for both of our ap-
proaches. On the one hand, seven samples of robots were tested
in a synthetic environment to bring out the main factors impact-
ing the energetic agent and its performances. On the other hand,
nine households took part in an ethnographic study with a robotic
vacuum cleaner to find out how people use and integrate the social
agent in their cleaning routine according to their needs.

4.1. Technical study in laboratory

The sample consisted of seven robot models, ranging from
the low-cost derivatives of the Roomba robot to recent products
embedding more complex sensors and algorithms. These products
target themassmarketwith an affordable price (between $250 and
$600). We classified them according to their navigation strategy.:

• Robots 1–3 (Fig. 2(a)–(c)) follow a random walk using some
predefined behaviors (wall following, spirals, and obstacle
avoidance, for example).

• Robots 4–6 (Fig. 2(d)–(f)) perform Ceiling Visual SLAM (CV-
SLAM), implementing an algorithm similar to the one described
by [38].

• Robot 7 (Fig. 2(g)) is fitted with a low-cost laser range scanner
performing 2D Laser SLAM [39].

Key questions. First, we formulate a supporting equation to help
in our reasoning around the energetic agent. For a specific robot,
let probot(t) be the instantaneous power drawn from the battery,
and let Ttask be the time needed to complete the considered
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Fig. 3. The experimental setups for the technical study. (a) Arena reproducing an apartment, side view. (b) Arena reproducing an apartment, from the overhead camera.
The white ellipse marks an area of difficult access. (c) Simple arena for cleaning tests.
task. The total energy consumed to achieve the task is Etotal = Ttask
0 probot(t)dt . To represent the set of possible configurations,

let −→α be a set of generalized design parameters, such as the type
of localization algorithm. These parameters will influence both
probot(t) and Ttask. In addition, if we take into account the efficiency
of the charging electronics, ηcharger, the parametric total energy
Etotal becomes

Etotal

−→α


=

1
ηcharger

 Ttask(
−→α )

0
probot


t, −→α


dt. (1)

One goal of this study is to help design more energy-aware
devices; that is, we explore the design space −→α in order to
minimize Etotal


−→α


. In Eq. (1), two functions can be minimized by

varying the design parameters: probot and Ttask. As we will show,
neither is independent, which makes the analysis of the problem
non-orthogonal.

The instantaneous power probot(t) comes from the ‘‘useful’’
power on the one hand, and from the losses on the other hand.
The required power is minimized by removing useless functions
or fusing together several functions, leading, for instance, to a
decrease in the number of motors used. Losses are minimized
by increasing the robot’s efficiency, for example by reducing the
numerous electrical andmagnetic losses inside themotors, as well
as by reducing the Joule and switching losses inside the electronics.
For a mobile robot, the energy lost when braking also accounts for
a part of the total losses, and it can be partially recovered by the
addition of appropriate electronics [40]. The overall control, such
as obstacle avoidance, is equally important, in order for the robot
to follow a smooth trajectory and avoid unnecessary braking. A
modified trajectory will, in most cases, influence the completion
time.

The other function to beminimized is the completion time Ttask.
In this case, increasing the robot’s speed is often useless, because it
will increase the instantaneous power accordingly. Better planning
and navigation are the keys for this strategy to succeed. When
complete coverage is desired or required, as in cleaning, patrolling,
or lawn-mowing tasks, a path planning coupled with a localization
strategy will cut down the coverage time compared to a random-
walk approach. Recent developments in the semiconductor
industry for mobile applications, coupled with algorithmic and
mechatronic advances such as the laser scanner of [39], havemade
simultaneous localization and mapping (SLAM) affordable for the
mass market. This benefit comes at the price of extra sensors and
computational power needed to achieve an efficient localization,
which conflicts with the reduction of the instantaneous power.

The concern is thus to choose the best technology in order
to reach a global trade-off. This article will assess, among other
factors, the effect of the navigation strategy on the total energy
based on measures performed with real mobile domestic robots.
Experimental setups. During this study, we explored several
performance metrics for each of the fields emphasized in Fig. 1(a),
making a link with the energy consumption when possible.
The navigation (Section 5.2) is tested in the setup depicted in
Fig. 3(a). It reproduces a two-room apartment with a total internal
surface area of 15.5m2 made of a concrete floor. Robots are started
from their base station located in the upper right corner. The
evolution of the coverage as a function of time is measured using
the overhead camera (Fig. 3(b)) and a custom tracking software.
The experiment is stopped when the robot returns to its base
station or when it runs out of battery power. Between 5 and 11
trials were conducted with each robot.

A simple setup (Fig. 3(c)) is used to measure the cleaning
capabilities (Section 5.3). It consists of a square surface (2 m by
2m). Several surfacings were used: (1) smooth concrete, (2) short-
pile carpet, and (3) a crack with a cross-section measuring 14 mm
by 6 mm. Dust was simulated using a mixture exhibiting a broad
granularity range: 5 g wheat flour, 5 g of fine sand, and 5 g wood
shavings. This was randomly spread by hand over the central
square (1m2) to avoid interferencewith the edges. The experiment
was stopped when the robot returned to its base station or when
the elapsed time reached 7 min 30 s. The collected material was
weighed using a laboratory scale with a resolution of 10−3 g. The
cleaning efficiency is defined as the ratio between the collected
material and the spread material (15 g). Three trials were done for
each combination.

Concerning the figures for the energy consumption used
throughout this work, both the global and the intrinsic instanta-
neous powers were measured in the setup shown in Fig. 3(a). For
the instantaneous power, a wireless datalogger working at 1 kHz
was hooked to the battery and used to measure the robot’s in situ
power probot(t) during operation. As for the global power, a power
analysis bench1 was used to measure the overall energy drawn by
the charging station during a complete recharge of the battery. Di-
viding the overall energy drawn by the run time gives the average
power consumption.

4.2. User study of robot usage in the wild

In parallel with the technical study, we deployed nine iRobot
Roombas for six months in different households and studied how
people used and lived with these robots in their homes. The
main motivation of this long-lasting ethnographic study was to
understand the process of adoption, social implications, and usage
patterns, and to find factors that impact the long-term acceptance
of these types of device. The identified usage patterns and user
needs can be closely related to the findings from the technical
study.
Course of the study. The study was conducted from March to
October 2011, and it consisted of five home visits over the six
months at each household in which we deployed a robot, as

1 Alciom PowerSpy: http://www.alciom.com/en/products/powerspy2.html.

http://www.alciom.com/en/products/powerspy2.html


F. Vaussard et al. / Robotics and Autonomous Systems 62 (2014) 376–391 381
(a) Roomba 520. (b) Roomba 563 PET. (c) A participant’s cleaning diary.

Fig. 4. The experimental methodology for the user study. (a) and (b) are the robots used for the user study. Copyright: iRobot Corporation. (c) Sample of a field diary
describing the cleaning routines.
follows: (1) one week prior to handing out the iRobot Roomba,
(2) the initial introduction, (3) two weeks after deployment of the
robot, (4) two months after deployment, and (5) six months after.
Several qualitative and quantitative measurements were used to
capture users’ feedback in order to derive usage patterns and
needs: at each visit, semi-structured interviews (1–1.5 h) were
conducted in which participants were asked to describe how they
used the robot, their satisfactionwith it, and perceived benefits and
constraints. In addition,we collected field notes, photos, and videos
from the on-site observations. During the ten days before each
visit, each household filled out a daily diary to document cleaning
activities and Roomba usage (starting with the second visit). The
methodological setup was inspired by Sung et al. [37]. We were
assisted by an ethnographer during the entirety of the study.
Participants. We recruited nine households from the area of
Lausanne in the French-speaking part of Switzerland. The sample
consists of two single-person households (a 40-year-old male and
a 71-year-old woman with a dog), a couple in their early 60s with
two cats, and six families. The families had between one and four
children; these children were aged 6 months to 18 years. Some of
the families had a cat or dog. Households had culturally different
backgrounds. As previous studies showed that the physical layout
of the home aswell as the composition of the household can impact
a family’s use of a robotic vacuum cleaner, we recruited a range
of households living in studios, apartments, or houses, with and
without children or pets, with working mothers and housewives,
andwith andwithout a cleaning service. Those householdswithout
a pet received a Roomba 520 (Fig. 4(a)), whereas pet-owners
received a 563 PET version (Fig. 4(b)). We did not expect to see
differences in how these two different models were used and also
did not look for cultural differences impacting use, as the broader
picture was of more interest to us.
Data analysis. We collected a comprehensive and diverse set of
data from our 44 household visits (five were planned at each of
the nine households; one of these had to be canceled). The data
considered here consist of audio transcripts from the interviews,
photos, videos, written field notes, and paper–pencil diaries that
people kept about their cleaning routines (descriptions about
who cleans what, when, where, how, and why), as shown in
Fig. 4(c). The analysis of these mostly qualitative data is based
on ‘‘Grounded Theory’’ [41,42] and the ‘‘Method to Analyze
User Behavior in Home Environment’’ [43]. An example of how
Grounded Theory can be applied to an ethnographic study on
human–robot interaction can be found in [44]. The diary entries
provided quantitative data that were subjected to a descriptive
statistical analysis. In total, we were able to consider n = 634
distinct cleaning activities from the diaries, of which 193 were
activities that involved the robotic vacuum and 65 involved the
traditional vacuum cleaner. Our findings are based on these
quantitative data and are enhanced using participants’ qualitative
statements.
5. Results

Results from both studies will be presented side-by-side to
better highlight synergies. Section 5.1 will specifically focus on
some of the power consumption issues. The remaining results are
grouped by the research fields identified in Fig. 1(a), which are
navigation 5.2, cleaning efficiency 5.3, and interactions with the
user 5.4.

5.1. Anatomy of the power

Efficient analysis of the energy issues related to a robotic system
requires that one first knows the relative impact of each subsystem
inside the total budget.Wewant to understandwhere the power is
being used from a systemic point of view. Simple yet informative
analysis methods are used to reveal which subsystems correlate
with specific power usage. The relevance of energy efficiency for
the user is likewise considered.

5.1.1. Technical study
An in situ analysis of the consumed power was first performed

by placing an embedded single-channel datalogger module be-
tween the battery and the robot. This module records the power
consumed during the whole experiment. It gives a good but some-
what indirect insight into the system. This method is easy to put
into practice, as the battery is easily removable. Two informative
plots are drawn in Fig. 5. On the other end, a multichannel datalog-
ger would give direct figures for each subsystem, but considerable
effort would be required to hack the robot’s electronics.

In Fig. 5(b), the startup sequence of the cleaning process for
Robot 7 (Laser SLAM) is clearly visible. Starting from the idle state,
the following phases can be identified: (1) the laser’s spinning
motor starts and stabilizes; (2) the powerful suction fan starts;
(3) the main brush starts to rotate (no side brush); and (4) finally,
the robot starts the driving motors and begins to clean. It can be
deduced that the Laser SLAM itself consumes only 1.9 W (6.3% of
the total cleaning power), compared to the cleaning subsystem,
which takes 23.8W (78.8%). Themobility accounts for 2.5W (8.3%).
For this specific robot, the power used for the navigation functions
is a marginal addition compared to the cleaning device.

Such a clear breakdown, however, is not always possible with
our simple method. One example of this is in the case of Robot 5
(Fig. 5(a)). The first small increase in power (black circle) is devised
to be due to the Visual SLAM subsystem (camera and algorithm). It
takes about 1.1 W of extra power, or 8.4% of the total power that
is typically consumed by an embedded processor. All the motors
start together and thus cannot be evaluated separately.

The influence of the navigation subsystem on the power budget
can be further studied. Fig. 7 plots the distribution of the in situ
power consumption of each robot in twoworking cases. Let us first
consider the idle case, when the robot is turned on, but notmoving.
The three robots performing CV-SLAM are, not surprisingly, among
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(a) Robot 5: Cleaning on concrete. The black
circle pinpoints the startup of the CV-SLAM
process, just before the robot starts moving and
cleaning.

(b) Robot 7: Carpet cleaning startup processes.
1: laser; 2: suction; 3: brushes; 4: driving
motors.

Fig. 5. Two plots from the in situ power measures.
the top consumers, as the additional embeddedprocessorwill need
between 0.5 and 1Wof extra power, evenwhennot processing any
data.

When considering the cleaning case, things are completely
different. The previous increase, due to the extra processing power,
is largely overwhelmed by the difference due to the driving and
cleaning motors. Thus, the addition of the SLAM represents only a
small part of the total consumption when compared to the energy
required for moving and cleaning. As we will see in Section 5.2,
SLAM-enabled robots benefit from the acceleration of coverage,
saving energy during the overall process.

A power analysis was also performed directly at the plug
of the recharge station. One initial observation is the high idle
power of the sole base station, with the worst result noted in
the case of Robot 2 (up to 3.5 W). When the charged robot is
left connected to its base station, the result further deteriorates,
as the power consumption increases to between 3.2 and 8.1 W,
depending on the robot. Unfortunately, this type of appliance is
not, at present, bound by any regulations similar to the European
regulation 1275/2008 [45], which limits the standbymode to 2W.
This represents a serious concern for these types ofmass-produced
electrical appliance.

The efficiency of the recharge station ηcharger was computed as
the ratio between the energy entirely consumed by the robot and
the amount of energy injected into the system during a recharge
cycle. For a given robot (fixed set −→α of parameters), Eq. (1) can be
reorganized to

ηcharger =
1

Etotal

 Ttask

0
probot(t) dt, (2)

where Etotal is the energy consumed at the plug to recharge the
robot and probot(t) is the in situ power measured on the robot
during the whole process.

This efficiency figure includes the intrinsic quality of the
charger aswell as the storage efficiency of the battery subsystem; it
varies between 0.33 and 0.84 in our study. The best two robots are
the ones that use Li-ion batteries, while the others use the Ni–MH
technology. In the case of the two worst robots, more than 50% of
the recharge power is already lost at the plug.

5.1.2. User study
The user study confirmed the importance of the topics we

addressed in our technical study. All nine households surveyed
considered the energy usage of the robot, sometimes related to
more practical reasons such as the autonomy and the charging
time. Interestingly, we did not have to bring up this topic; all of the
participants independently asked formore information concerning
the robot’s energy use, or told us that they were concerned about
the fact that the robot’s charging stations needed to be plugged in
at all times.

Our findings indicate that userswish to havemore transparency
with respect to energy usage. Some other home technologies (such
as washing machines or dishwashers) already indicate their level
of electricity consumption according to European standards. The
reasons given by the participants for desiring reasonably low
energy consumption on the part of the robot ranged from the
financial importance to factors related to the environment and
healthy living.

Most households completely switched off the robot and
unplugged its charging station when the device was not in use
to avoid overly high energy consumption. However, this hinders
a programmable robot from starting a cleaning session when
scheduled, and thus undermines one of its most valuable facets:
the ability to clean autonomously. For robotics in general, this
shows how closely the aspect of reducing the energy consumption
is related to user satisfaction and the acceptance of technical
devices in homes.

5.1.3. Joint outcomes
The user study indicated that the end-users do care about the

energy consumption. This fact even leads users to overreact by un-
plugging the charging station to avoid idle losses. This action hin-
ders the robot fromworking in an autonomousway, as a researcher
would expect in the first place. On the other hand, measures per-
formed on real hardware show poor energy performances in idle
mode, with no incentives for better performance, as the current
products are not bound by any regulations.

This can be fought using several tools. Better electronics, of
course, is the first key to success, but the user should not be
ignored. A first step goes through a restrictive regulation, but
energy awareness should also be advertised to the user, using ade-
quate feedback. The system should be able to provide information
regarding past and present operations of the robot. As feedback ap-
pears to be a key issue in our study, we will discuss this point fur-
ther below.

Finally, energy autonomy will also be of prime importance
for the end-user, especially in the case of wide spaces. A robot
should be able to cover the space under consideration in a sin-
gle session, without requiring intervention from the user. This is
directly related to the energy consumption at the heart of this
work, and an improvement in the field of the energy consumption
will thus directly benefit the end-users. Laser-based and vision-
basedmapping technologies induce an increased power consump-
tion by 1 to 3 W, according to our measurements. The question
remains whether they will be able to save energy on the overall
process.
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(a) Evolution of the average coverage over one hour. (b) Completion time for each robot. (c) The specific energy, in J m−2 , for each robot.

(d) Impact rate for each robot.

Fig. 6. Analysis of navigation performance for the seven robots.
5.2. Navigation efficiency

A cleaning robot, like some other domestic robots, should not
only consume low power and be energy efficient, but it should also
effectively cover the area of importance. Overall planning, such
as the rooms to cover, the order in which the rooms should be
covered, and the cleaning tasks’ frequency, are important topics
for the user.

5.2.1. Technical study
Coverage analysis. The trajectories were recorded using an over-
head video tracking system when the robot was engaged in clean-
ing the apartment space shown in Fig. 3(a). A sample of each
trajectory is shown in Fig. 8. It clearly shows distinct strategies for
each robot.

To estimate the surface covered, the image analysis integrates
over time the surface hidden by the robot’s shape. For this purpose,
the Gaussian mixture-based background segmentation of [46] is
applied to the calibrated pictures. This estimation does not take
into account the side brushes used by most robots, or the width of
the main brush under the robot. In the results, hidden areas (such
as that under the sofa) are not taken into account. The cleaning
efficiency per surface unit is considered separately in Section 5.3.

The evolution of the coverage, as a function of time and
averaged between all the trials, is plotted in Fig. 6(a). The SLAM-
enabled robots seemmuch faster than the others. This is confirmed
by the computed completion times shown in Fig. 6(b). Localization-
less robots have no robust way to compute the achieved coverage.
Consequently, they do not return to their base stations when the
coverage reaches a steady state, and most of the time they dock to
their stations after an extended period of time. In contrast, Robot 6,
which is the slowest among the robots performing SLAM, is three
times faster on average than are the random-walk robots.

Regarding the coverage achieved, random-walk robots take
time but achieve a robust coverage. On the other hand, Robot 4, and
to a lesser degree Robot 5 (both relying on vision), underperform
compared to the others. Looking back at the image analysis, it
appears that some places are harder to reach for them. Such a place
is that between the sofa, the intermediate wall, and the bin (white
ellipse in Fig. 3(b)). In half of the runs, Robots 4 and 5 were unable
to reach this place, thereby losing part of the coverage. In contrast,
Robot 6 was successful on all of its 11 runs, as its path planning
uses thinner bands, as one can see in Fig. 8(f). While some time is
lost by this strategy, it gains greatly in robustness and coverage.
Specific energy. One of our key questions is the influence of design
parameters on the energy consumption, and especially the naviga-
tion strategy. To answer this question, we now compare the cov-
erage strategy, with respect to the energy. For this, we define the
specific energy, which is the energy needed to cover 1 m2 of floor.
From Eq. (1), we know that the energy totally consumed by the
robot can be expressed as

 Ttask
0 probot(t) dt; therefore we have

Especific =
1

Aeffective

 Ttask

0
probot(t) dt, (3)

where Aeffective is the surface effectively covered, as deduced from
the previous coverage analysis. Fig. 6(c) shows the results, which
clearly demonstrate the effectiveness of the SLAM-enabled robots
over those employing random-walk methods, counterbalancing
the increase of power by a drastically reduced Ttask. However,
no clear conclusion can be drawn between CV-SLAM and Laser
SLAM robots, even if Robot 6 (CV-SLAM) is two times more energy
efficient than are the other robots.
Impact rate. The mitigation of the effects from the robot impacting
or colliding with objects is closely related to the user’s wish
regarding preservation of potentially fragile objects. During the
course of our experiments, an accelerometer was placed inside
a ballasted dustbin to record the number of hits. This setup was
located in a corner of the room (bottom right of Fig. 3(b)). The
number of impacts per hour is plotted for each robot in Fig. 6(d).
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Fig. 7. Task-related in situ power measured for each robot. Around 1000 samples
have been used for each dataset.

Obstacle avoidance relies primarily on the proximity sensors.
Most robots use infrared (IR) proximity sensorswith the number of
sensors employed varied between two (Robot 2) and seven (Robot
4 andRobot 6). Robot 5was the only robot that used five ultrasound
sensors (with an addition of two long-range IR sensors on the
sides); Robot 7 relied on its laser scanner with a short-range IR
sensor on the side to allow it to accurately follow walls.

If we take robots using only IR and ultrasound sensors (Robots
1–6), no sharp claim can be made regarding better performance
when using a mapping technology. Robots 4 and 5 (CV-SLAM)
perform comparably to Robot 1 (random walk), even if Robots
2 and 3 (random walk) perform far worse. Robot 6 (CV-SLAM),
however, is the best performer in our sample. One can also notice
the slower coverage in this case (Fig. 6(b)), as the robot clearly
slows downwhen approaching an obstacle, where othersmaintain
their speed up to the point of contact. Robot 7 (Laser SLAM) also
performs well, since its sensor readily provides a dense map of
obstacles.

5.2.2. User study

Coverage. The robot’s cleaning path is closely related to the users’
perception of how efficiently the robot cleans. In agreement with
the results of Kim et al. [8], we found that users desire the robot
to plan its path intelligently according to specific aspects such as
area/subarea of a room, floor material, and level of dirt. People
generally want a cleaning robot to cover the whole floor. Partici-
pants were particularly annoyed when the robot left some spots
Fig. 8. Sample of the trajectories for each robot, grouped by localization strategy.
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Fig. 9. Sample of the expected trajectories drawn by several users.
Table 1
Cleaning frequencies by places (in %), when using a vacuum cleaner and the robotic
cleaner, analyzed from the cleaning diaries; not all possible places are listed.

Where? Vacuum cleaner (%) Robotic cleaner (%)

Bathroom 35 2
Kitchen 17 35
Children room 17 17
Bedroom 14 10
Living room 10 28

uncleaned even in the middle of the room. For this reason, good
coverage of the entire space to be cleaned is very important.

Other specifics emerged about the satisfaction (or lack thereof)
of the users with the Roomba. In one instance, a mother expected
the robot to clean the whole room in a short amount of time. She
left it for only five minutes in the spacious living room, and then
she switched it off to carry it to another room, only to find that the
living room had not been completely cleaned. The problem, in this
instance, is that the robot is being used in a way that is technically
different fromhow it is intended towork, coupledwith insufficient
feedback. The robot required patience from the user side, which
was cited as a difficulty for some of the households in the user
study. Thus, swift coverage is also of prime importance.
Cleaning habits. Another aspect related to the navigation of the
robot is how people wish to use the robot. In agreement with Kim
et al. [8], we also found that users want to use the robot according
to specific spaces (for example, in the hallway, kitchen, or living
room), and that users often have specific ideas concerning how a
robot should progress through the cleaning of these spaces. The
robot, however, does not follow such a path. Someparticipants also
wished that the robot would clean areas in a specific order; one
example of this would be to vacuum dirty spots such as under the
bed at the end (also in accordance with [8]).

We analyzed participants’ cleaning diaries with respect to
where vacuuming was performed (Table 1). Interestingly, robots
were used in some rooms much more often than in others, and
the distribution was not similar to where a manual vacuum
cleaner was used. Whereas a hand-operated vacuum cleaner
was most often used in the bathroom (35%), this was the room
where Roomba was used least often (2%). Asked why, participants
answered that they would be afraid of letting the robot pass over
wet spots. Participants also indicated that bathrooms were tiny
rooms and conveyed the belief that the robot was not adept at
cleaning such spaces. Conversely, 35% of all Roomba cleanings took
place in the kitchen, while it comprised only 17% of all hand-
operated vacuum cleanings. An interpretation of this user behavior
is that the kitchen is a place where frequent quick spot cleaning
is required and that the Roomba is preferred over a manual
vacuum cleaner for this kind of cleaning. A possible explanation
is that it takes longer to have the manual vacuum cleaner ready
for vacuuming: it needs to be taken from the closet, plugged in,
adjusted, plugged out, and re-stored, whereas a robot can be used
right away.
Planning transparency. The user’s viewpoint of how the robot’s
path planning is perceived is important for the acceptance of the
robot. A robotic vacuum cleaner needs to be able to trace a smart,
smooth, and efficient path that is comprehensible to some extent
to humans. Before participants received a Roomba, we asked them
to draw a path of how they expected the robot to move around
their home (Fig. 9). Most people imagined the robot would go
roomby room andwould spendmore time cleaning in areaswhere
more dirt was likely to be found; for example, around the dining
room (crumbs from eating, etc.) (Fig. 9(b) and (c)). One user was
convinced that the robot would go back to where she put it for
the start of its cleaning path, namely at the entrance of the house
(Fig. 9(a)). One family in which the father was a computer scientist
imagined rectangular movements (Fig. 9(d)). Overall, people had
no clear idea about how the robot would plan its path.

When people used the Roomba for the first couple of times,
members of all nine households carefully watched how it moved
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Fig. 10. Analysis of the cleaning task: surface-related in situ power measured for
each robot. More than 1000 samples have been used for each dataset.

around their homes. Most participants attempted to understand
how and why the robot ‘‘decided’’ its path. Most households
were skeptical about the Roomba’s random path, and one mother
expressed her disappointment: ‘‘How does it decide where it goes?
It is stupid, it does not see where the dirt is, it always moves away
from it!’’ One family enjoyed the robot’s unpredictability but all
remaining eight households described the behavior as ‘‘stupid’’ and
‘‘not understandable’’. This unpredictabilitymade the robot appear
uncontrollable to them, and six of theninehouseholds did notwant
to rely on it; they were afraid to let it clean when they were not at
home. The verdict was that the robot could not be trusted enough,
especially in the presence of fragile objects on the ground.

This works against an early acceptance of the robot. Robotic
vacuum cleaners are not entertainment robots; they are there
to fulfil a routine task. As we found in the user study, people’s
first impression about the robot had a strong impact on the
long-term acceptance of it. Thus, preferably, a domestic service
robot convinces people from the very beginning by making them
understand how it works, by being transparent in its path planning
so it is ‘‘understandable’’, and users have fewer worries about its
randompath. This goes alongwith the aspect of ‘‘transparent robot
behavior’’ [47]. People wish to understand the robot’s navigation,
as this leads to the impression of having the system under control.

5.2.3. Joint outcomes
The user study makes it clear that the current robots do

not match the users’ preconceptions. Often, the user does not
understand what the robot is doing, and sometimes experiences
frustration or loses patience. On this point, robots using SLAM
have a clear advantage by being systematic, and thus more
predictable, in addition to being faster and sparing energy. From
the user perspective, SLAM can play a key role in enhancing
user acceptance, and can support the robot in providing services
matching user expectations.

Nonetheless, the feedback given by the robot could be greatly
extended to improve user’s awareness and to make the device
more trustworthy. With the house’s map at hand, the robot
could communicate the estimated completion time, cleaned and
uncleaned areas, or locations where it often encounters trouble
and requires the user’s assistance. The communication medium,
for example, could be an embedded screen, or perhaps even an
application for a smartphone.

The user study also reveals how the cleaning habits are
segmented in both time and space. Not all the areas have the same
functional and emotional importance, nor do they require cleaning
with the same regularity. Again, SLAM robots could reach a higher
level by learning these patterns (with some feedback from the
user), and fuse them with the map in order to adaptively clean.
Areas with a higher density of dust can be cleaned first, and more
often. Another benefit is an increased energy efficiency, as only the
necessary amount of work is performed.

Finally, we have the necessary elements to answer this
question: Compared to a manual vacuum cleaner, does a robot
perform better in term of energy? We will focus on the setup of
Fig. 3(a). With a robot consuming roughly 20 W (Robots 1–5 on
a concrete floor), it will take around 15 min for the fastest one,
equaling an energy amount of 18 kJ. In contrast, a human will take
about 5 min with a vacuum cleaner consuming usually 1000 W
or more, equaling an energy amount of at least 300 kJ. The robot
consumes roughly 15 times less energy per cleaning. If the robot
were to replace the traditional vacuum cleaner completely, its
usage every day of the week would save about half of the energy
consumed by a weekly manual vacuuming.

In reality, and as noted in Section 5.3.2, the robot will usually
never completely replace the manual vacuum cleaner, as it cleans
less efficiently. Formost users, the robot will engender a decreased
usage of the manual vacuum cleaner for spot cleanings, and it will
help to keep an overall cleaned state by doing frequent cleanings.
However, actual figures depend on the group of users considered.

5.3. Cleaning

Vacuum cleaning may seem to be an easy task at first, but in
reality it is quite challenging, as the robot will evolve on a broad
diversity of surfaces and face heterogeneity in the material to
collect. The design of the embedded system must also take into
account the limited power at the robot’s disposal, as well as the
limited space available to integrate the cleaning system. In this
section, we will study the influence of the environment on the
cleaning task, and describe people’s different cleaning strategies
to ascertain how a robotic vacuum cleaner could meet them.

5.3.1. Technical study
Fig. 10 shows the averaged in situ power measured for the

robots when cleaning two types of surface, namely concrete and
a short-pile carpet.2 The power distribution clearly shifts upward
for all the robots when cleaning the carpet. This is explained by the
increased current due to the additional frictional resistance on the
cleaning brushes. Cleaning a rough surface requires more power.

From the user’s perspective, cleaning efficiency is one of the
most important factors that determines the usefulness of a robotic
vacuum. Efficiency figures were measured on three different
surfaces, according to the setup described in Section 4.1, and
averaged on three trials. These figures were then compared to the
averaged in situ power previously measured. Plots are given, as a
function of the surface’s type, in Fig. 11(a)–(c).

In the case of the concrete surface (Fig. 11(a)), no relationship
between the cleaning efficiency and the robot’s power can be seen
(using a linear fit, the goodness of fit R2 is only 0.018). Most robots
scored about 90% with respect to the amount of material collected
during cleaning. For comparison, the same test conducted with a
manual vacuum cleaner (Dyson DC05) showed an efficiency above
98%.

In the case of the carpet (Fig. 11(b)), the cleaning efficiency
ηcleaning,carpet exhibits a moderate dependency on the robot’s
power, as shown by the linear regression

ηcleaning,carpet = 0.007 · probot − 0.092 (R2
= 0.56),

2 All robots were unable to clean a long-pile carpet due to the small distance
between the ground and the robot’s frame.
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Fig. 11. Analysis of the cleaning task. (a)–(c): Cleaning efficiency as a function of the robot’s averaged in situ power when cleaning on concrete (a), on a carpet (b), or when
cleaning a 6 mm deep crack (c). The green line shows the linear regression performed on the data. Three trials were done each time.
where probot is the averaged in situ power. The overall efficiency
remains poor (below 35%) in all cases.

Finally, for the cleaning of the 14mmby 6mmcrack (Fig. 11(c)),
data are quite well explained by a linear regression:
ηcleaning,crack = 0.041 · probot − 0.47 (R2

= 0.74).
In conclusion, the suction power does not really help when

dealing with a flat and smooth surface. The design of the brushes
is the primary concern in this case. However, suction power does
become the main tool on a hard and uneven surface.

5.3.2. User study
Each household cleans differently, according to the physical

characteristics of their home and their personal preferences. In
cleaning, there is no ‘‘right’’ or ‘‘wrong’’. In turn, one cannot make
general statements about how people clean. We would like to
give a rough idea of how the households in our case study used
theirmanual and robotic vacuum cleaners.We describe how usage
patterns are determined by the housekeeper’s personal conviction
of cleanliness and reflected in a specific cleaning strategy.

On average, participants vacuumed their homes once per week
or once every other week. Only one household with a dog that
shed a lot of hair used to vacuum three times per week, and
one single person household only once every two months. The
three households that integrated the robot in their cleaning routine
used the Roomba on a daily basis, much more frequently than
they used their manual vacuum cleaner. Still with the robot, the
manual vacuumcleanerwas used from time to time to cleanwell in
corners.Whereas themanual vacuum cleaner was usedmost often
on weekends (41%), the robot was used equally often on every day
of the week, with a small peak on Wednesdays (20%). Detailed
results are plotted in Fig. 12. This shows how the robot changes
people’s cleaning frequency, by using the robot more regularly all
over the week. However, this change could only be observed in the
households that adopted the robot. A householdwas considered as
‘‘adopter’’ when they kept using the robotic vacuum cleaner during
the six months of the study and expressed interest in buying it if
we were to take it from them.

When considering various floor surfaces, people had different
opinions about how well the robot cleaned on carpet, tiles, or
parquet floor. However, participants consistently found the robot
had difficulties with the transitions between different floor types
and lost dirt it had already collected when moving onto a carpet,
for instance.

Users prefer that a robotic vacuum cleaner would meet their
standard of cleanliness as well as their expectations of ‘‘how
cleaning is done’’. However, people have different attitudes
towards cleaning and cleanliness. To understand better how a
robot could meet a user’s needs, we derived four types of cleaning
strategy based on the motivation that a household shows to
keep the home clean and the efforts made and time spent for
cleaning [15].
Fig. 12. Frequency of use (in %) for the vacuumcleaner (VC) and the robotic cleaner,
as a function of the days of the week. Values of n indicate the size of each dataset.

Spartan cleaners barely notice dirt and do very little about it.
They have no or low motivation to clean, and hardly
use the few cleaning tools they do possess. Vacuuming
once every two months might be considered a typical
behavior. However, in spite of this, they feel comfortable
in their environments because cleaning is not of great
importance to them. In our sample, one of the spartan
households always set an alert on a cell phone to be
reminded to vacuum; it would have been forgotten
otherwise.

A robotic vacuum cleaner could more easily suit the
cleaning standard of the spartan cleaners, as it tends
to be not very high. Given that the robot would clean
efficiently, it could even replace the vacuum cleaner.
Further, a cleaning robot could help spartan cleaners by
automatically starting a cleaning session from time to
time. A robotic vacuum cleaner for spartan cleaners could
be fairly autonomous, and could clean while they are not
at home.

Minimalistic cleaners notice dirt around the house that makes
them feel a little uncomfortable (which creates some
intrinsic motivation to clean). They do what is necessary
but not more. Vacuuming is done only when they have
time to do so. Cleanliness is not a priority.

Since minimalistic cleaners do not like to spend a
lot of time tidying and cleaning, a robotic vacuum that
meets their needs would have to be always ready for use
(‘‘opportunistic cleaning’’ [4]), small, and time efficient.
It also would have to work somewhat silently and
discreetly to not make the user think about cleaning.

Caring cleaners really care about having a clean and nice-looking
home to show guests that they have a well-working
‘‘home ecosystem’’ (which creates some extrinsic moti-
vation). They like to keep the home clean (or engage a
cleaning service) and enjoy cleanliness and order.
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Ensuring a healthy environment for their families is
central to caring cleaners. A robotic vacuum cleaner based
on their needs could have a more meticulous cleaning
path, with a detailed report of the collected dust (where,
how much) and a visible energy-saving function.

Manic cleaners clean almost obsessively. They are very picky,
notice every little piece of dirt and every blemish, and
probably constantly feel the pressure to clean or tidy up.
Accordingly, they always spend a lot of time tidying up,
and cleaning tasks are a priority for them. Theywould not
engage a cleaning service, because then the state of their
homes would not be under their control anymore.

It is difficult to meet the standards and needs of
manic cleaners, as they feel a strong need to control their
surroundings. For this reason, a cleaning robot would be
more of an extra cleaning tool than a partial replacement
for their vacuum cleaner. A less autonomous robot is
suggested, which could be precisely scheduled (time and
space), possibly remote controlled, and would also need
to be discrete while providing perceivable value in how
it cleaned (as manic cleaners would tend to observe the
robot and not leave it ‘‘alone’’) by eventually moving
more slowly and remaining longer in edges and corners.

This classification is based on our ethnographic study in
only nine homes, and is therefore eventually not generalizable.
However, what is important here is to shed light on people’s
different cleaning strategies and also different expectations of a
robotic vacuum cleaner.

5.3.3. Joint outcomes
People have different expectations regarding the cleaning task.

We were able to classify our households into four categories in
terms of the frequency of cleaning and the level of expectations.
The needs of spartan and minimalistic cleaners are already
addressed by current robots. This is not the case for caring cleaners,
not to mention manic ones. To address these shortcomings, the
robot should be configurable, in order for the robot’s design to
reflect people’s different needs of cleanliness and patterns of using
the robot. This implies a varying level of autonomous decision
(when to clean), configurable and adaptive path planning (where
to clean), and the feedback given to the user (how it was cleaned).

Robots with a low power consumption clean equally well on
smooth surfaces, but still have a cleaning efficiency slightly below
that of a vacuum cleaner. On uneven surfaces, the suction power
becomes important, whereas the efficiency on carpets is low in all
cases. Our recommendation is to adapt the cleaning power to the
type of surface using a classification algorithm.

5.4. User interactions

In the following, we describe how the user and the respective
robotic vacuum cleaner interact with each other. The interaction
can be direct or indirect and be split into three main parts: how
users operate and give commands to the robot; how the system
gives feedback to the user; and other more indirect interaction
with the user’s and robot’s shared environment, such as the noise
the robot makes and its visibility during the cleaning process.
Operating the robot. The control of the robot is usually kept very
simple, with one or several push buttons for immediate operation,
and with a daily or weekly timer for scheduled tasks. The only
operating option is to clean the whole surface, which is not the
most energy efficient, as not all the rooms would need to be
cleanedwith the same schedule. A rich user-friendly interface, like
a touch screen, would provide the userwithmore control over task
planning. To ease the burden on the user, a map combined with a
capacitive dust sensor would enable the robot to learn where dirt
was more likely to accumulate in the cleaning area. This would
allow the robot a higher degree of autonomy in being able to
choose the high-priority places to clean. This is related to the work
of Kim et al. [8].
Feedback from the robot. The feedback is limited to a few LEDs,
or a screen with very limited information. With the advent of
mapping technologies, information could cover broader aspects,
such as where the robot is intending to go. This has the goal of
reassuring theuser. The robot could also provide a kindof ‘‘cleaning
report’’, which would give more transparency to the user with
respect to what the system achieved, what has to be done, and so
forth. Ultimately, this could enhance acceptance and adoption of
the robotic vacuum cleaner.

With respect to human–robot interaction, participants ap-
preciated the audio-feedback (different sounds) as well as the
spoken verbal feedback of the Roomba, as no other technical
product they possessed would use this kind of feedback. Children,
in particular, reacted very positively to the variety of sounds that
the Roomba played. However, some parentswere afraid thiswould
be too engaging for the children and that their children would not
stop playing with the robot. Thus, sounds could probably be more
functional and less entertaining, butwe also found that the parents’
role of introducing the robot to the children influences how they
approach it. Several participants suggested that the robot could be
made to understand verbal commands or gestures to help it find
the dirty spots in the apartment. The idea of using verbal feedback
was suggested by some of the users but strongly rejected by oth-
ers, as they found it intimidating. Spoken feedback can probably be
integrated as an option, and it would be up to the user to choose to
use it.
Noise. The noise emitted by the robot is also an important factor
behind long-term acceptance. A noisy devicewill be less attractive,
especially if the user wants to keep an eye on it to monitor the
cleaning process. One of the families in the user study wanted to
use their Roomba overnight. Although the bedrooms were located
on the second floor, they still woke up due to the noise the robot
made in the kitchen on the first floor. Conversely, noise is not a
problemwhen the systemworks while no one is at home, which is
also the intended use of a robotic cleaner.

Furthermore, people’s different cleaning strategies and ways of
using the robot require the system to be as quiet as possible. Some
users, especially caring cleaners, would also tend to keep an eye on
the robot when it was in use but would still wish to do ‘‘multi-
tasking’’.

The total sound power level LW was measured according to
the norm NF EN ISO 3743-1 in a reverberating room, using the
mid-band frequencies between 125 Hz and 8 kHz. The A-weighted
power level LWA for each robot, as a function of the averaged in situ
power, is shown in Fig. 13.

The noise will depend on a broad variety of parameters, such
as the rotation speed of each motor, the quality of mechanics,
isolationmaterials, brushes, and so on. But, as one can see in Fig. 13,
the data can be partially modeled by the linear regression

LWA = 0.64 · probot + 61.4 (R2
= 0.61).

As was shown during the crack test, the difference in power
between the robots can be mainly explained by the suction power
produced by the cleaning system. A low-power robot will be
consequently easier to silence, making it more pleasant for the
user, but reducing the cleaning efficiency of the robot on rough
surfaces. This is a great opportunity for an adaptive system, which
would be able to minimize the noise most of the time, while still
retaining its cleaning efficiency on diverse types of surface.
Robot’s visibility. In contrast to a manual vacuum cleaner, a robotic
vacuum cleaner is visible to the household members most of the
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Fig. 13. A-weighted sound power as a function of the averaged in situ power for
each robot. The green line shows the linear regression performed on the data.

time, evenwhen the system is not in use. For this reason, the visible
design of the robot requires special attention. Optimally, the design
would fit the style of the home and likely not resemble a cleaning
tool so much as some kind of home accessory. One participant
explained: ‘‘I need the vacuum cleaner every single day to clean up
around the table. Sure, it would be easier to have it just right next to the
table. But it would not look nice. I do not want my vacuum cleaner or
any other cleaning tool to be that present.’’ The importance of a good
visible design becomes increasingly important when people are
hosting guests. Whereas five of the households proudly presented
their cleaning robot to guests, four of the households unplugged
their Roomba’s charging station and put it, togetherwith the robot,
in a closet or under the bed to hide it, as they found it did not fit
with the rest of the house and looked rather ugly. It is therefore
necessary to put together an optimal functional shape of the robot
with a good design to make the robot less intrusive, permitting it
to merge with its surroundings.

6. Conclusion

In this paper, we have presented results from an evaluation
of several domestic robotic vacuum cleaners with respect to
several main topics: power consumption, navigation, cleaning
performance, and human–robot interaction. We not only carried
out a formal comparison of seven different robots, but we also
conducted a long-term user study with nine households. This
holistic approach was chosen to advance personal service robots
further and enhance their acceptance by merging together both
sides of the robot’s lifecycles: technical design and final usage.

Our methodology is based on a number of assumptions. First of
all, some of the results from the user study are based on people’s
self-reported data. We carefully verified these data during the
interviews and our on-site observations to capture ‘‘reality’’ aswell
as possible. However, these qualitative data remain subjective.
Therefore, the results can only be taken as being reflective of
individual cases, and cannot be generalized.

Second, we only used random-navigation robots for the user
study, whereas the technical study also included systematic nav-
igation robots. To investigate the impact of user perception of the
robot’s path planning, another type of robot with planned naviga-
tion could have been used, and this would have complemented the
results. With our study in hand, we have strong evidence that such
a type of robot would improve the long-term acceptance.

Finally, concerning the technical study, the environment was
simulated. Although modeled after a real scenario, it still lacked
some challenges encountered by robotic vacuum cleaners in
people’s homes. Our environment was static and constrained,
while a house is generally dynamic and unconstrained. The
robustness of the navigation consequently remains untested.

Nevertheless, we were able to combine the outcomes of both
studies in a meaningful way. We identified concrete benefits and
drawbacks of mapping technologies for domestic floor-cleaning
robots, on the one hand regarding the amount of energy consumed
by the system and on the other hand taking into account users’
needs and perceptions. We found that the user’s perception highly
depends on how users actually use the robot, and that this
perception in turn influences the design requirements. People
wish to understand how their robotic vacuum cleaner is working
(‘‘transparency’’), which is not the case with random navigation.
Currently, the robot does not provide adequate feedback to the
user, decreasing the chances of long-term acceptance. This could
be improved by providing the user with amap of the environment,
and fusing inside it information coming from the sensors such as
dust, energy consumption, and type of surface. The user could in
turn give information to plan the tasks more precisely.

Based on people’s different cleaning strategies and attitudes
towards cleanliness and robots, there is no single best solution.
Our evaluation shows that a manual vacuum cleaner is still more
efficient for cleaning. However, this comes with a much higher
energy consumption, whereas a robot is more energy efficient.
When comparing different navigation strategies, the addition of
an SLAM-based solution enables a reduction of overall energy
consumption by speeding the completion time.

There is no out-of-the-box answer to the question ‘‘can a robot
be a drop-in replacement to accomplish domestic tasks?’’ It mostly
depends on how the respective product is used and thus always in-
volves both the user and the system and their shared environment.
It has to be clear that, as soon as robotics tries to enter people’s
homes, the human will be at the center of it. Therefore, success
first and foremost depends on providing solutions that match real
needs.

Participants in our study wished that the robotic vacuum
cleaner would solve the shortcomings of their manual vacuum
cleaner, and consequently decrease the amount of work for the
user. However, six of the nine households stopped using the robot
after a while. Although people were at first enthusiastic and in-
terested in trying out a robotic vacuum cleaner, the majority be-
came disappointed as they actually assessed the robot’s relevance
within their own ecosystem. In this case, the rejection of robotics
is not motivated by some underlying fear or negative preconcep-
tions, but is an issue of how functional the robot is within people’s
ecosystems. After the novelty effects had worn off, the robot be-
came another cleaning tool with its own flaws.

We also noticed two big hurdles from the human side: a lack
of trust in the robot to do its work autonomously while the
homeowner is not around, and a willingness to adapt and make
physical alterations to the home itself for the robot.Webelieve that
domestic robots should be designed tominimize the need for these
types of effort.

Our study tries to contribute to and extend further the results
from previous works [3,8]. The first research axis looks on how
specific technical aspects in vacuum cleaning robots are perceived
from the user’s viewpoint. Conversely, we investigate how specific
aspects, perceived as shortcomings from the user point of view,
can be tackled by technological solutions. We can suggest several
practical improvements aimed at increasing the synergies between
the user’s needs and the robot’s capabilities. It principally comes to
enhancing the perceived energy efficiency, the navigation inside
the user’s space, and the feedback coming from the robot. These
improvements leverage the available mapping technology, by
pushing forward the learning and reasoning algorithms, as they are
currently at a very rudimentary level.
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• The surfaces to be cleaned can be classified regarding their
roughness, opening doors for an adaptive suction power.
Advantages of this are a reduced power consumption on flat
surfaces, with a reduced noise power level. The suction power
can be increasedwhen cleaning an uneven terrain for increased
efficiency.

• The dirty spots can be learned over several runs. This enables
adaptive planning to be put in place, in which dirty places
(kitchen, living room) are cleaned with a different frequency
to meet the user’s needs. Energy is also spared, as only the
necessary amount of cleaning is performed.

• The map enables the robot to clean by unit area, as described
by [8]. This way, certain parts of the surface can be cleaned
using a more refined schedule. The participants in our study
expressed this aspect either as a wish for a future version of the
robot, or instead as a shortcoming of the current version.

• The feedback to the user can be enhanced. On the map of the
house, several layers of information could be added: what the
intended planning is, what has already been cleaned, where
the dirt is, if there any unreachable points, and so forth.
This map can be provided using a rich interface, for example
through a smartphone application. This feedback could also
include estimates of time remaining until completion. This will
enhance user acceptance, especially for more demanding users,
by creating transparency and a feeling that the user ‘‘knows’’
what the robot is doing.

These improvements will be at the center of our future work, in
order to provide more helpful robots for daily life. Moreover, this
study allowed us to identify key parameters to reduce the energy
consumption of domestic robots. By leveraging this knowledge, we
are aiming at robots that are able to operate autonomously indoors,
without having to rely on the power grid. This improvement
goes towards the expectations of users and the needs of our
society.

This advance implies the necessity of embedding some kind
of energy harvesting into the mobile robot and/or on a charging
station, providing it with energy extracted directly from the
surrounding environment, as previously discussed in [48]. Light,
heat, or mechanical work produced by humans could act as the
primary source of energy. In any case, the available energy level
will be low and highly fluctuating over time, driving the need to
spare energy at the level of the complete system and to gain more
information concerning the surrounding environment.
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